

Features

- Input voltage range: 3.6V ~ 28V
- Both IN and ISNS may supply the chip
- Low on-resistance for IN-OUT: typical 40mΩ
- IN-COM for 10Mbps bit rate Communication
- Over voltage protection: 5.8V
- Super-fast OVP response time: typical 50ns
- Over Current Protection
- Short Circuit Protection
- Over Temperature Protection with external NTC
- Tiny 6-bumps WLCSP 1.17mm x 0.815mm

Applications

Smart Phone, AR/VR Device, Tablet PC, Wearable etc.

General Description

YHM2010M over-voltage protection devices feature a low 40m Ω (TYP) on-resistance high current integrated MOSFET which actively protect low-voltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices.

The over-voltage protection threshold is 5.8V. YHM2010M device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is 2.35A.

YHM2010M has two outputs, OUT supports 2A current for power supply, COM supports 10Mbps digital signal communication when the chip is powered by ISNS pin.

YHM2010M has an NTC pin to support over Temperature Protection. It turns off when detected ambient temperature via external NTC resistor exceeds a preprogrammed threshold. Once turned off, it cannot be turned on until VIN is disconnected and reconnected again.

YHM2010M is available in tiny 6-bumps WLCSP 1.17mm x 0.815mm, 0.4mm pitch, and operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

Typical Application

Fig 1. POGO Pin Communication and OVP Application Diagram

Internal Block Diagram

YHM2010M Pin Configurations

Fig 3. YHM2010M WLP-6 Pin Assignment (Top Through View)

YHM2010M WLP Pin Descriptions

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

1. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

Parameters	Min.	Max.	Unit
Supply Voltage: V _{IN}	3.6	29	V
Supply Voltage: V _{ISNS}	1.6	5.5	V
Ambient Operating Temperature, T _A	-40	85	°C
Vout Load Capacitor	1	100	μF
Operating Temperature Range	-40	85	°C

2. Detailed Electrical Characteristics

 $V_{IN} = 3.6V$ to 28V, $C_{IN} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to +85°C, typical values are at $V_{IN} = 5$ V, $I_{IN} \le 3$ A, $T_A = +25^{\circ}$ C, unless otherwise noted.

PARAMETER	SYMBO	CONDITION	MIN	TYP	MAX	UNIT
INPUT OPERATION						
Input Voltage Range	VIN		3.7		28	V
Input Supply Current	I _{IN}	V_{IN} = 5V, NTC floating		32		μA
Under-Voltage Lockout	VIN_UVLO	V _{IN} falling		3.5		V
Under-Voltage Lockout Hysteresis	VIN_HYS			0.1		V
OVER-VOLTAGE PROTECTIC	N	C_{i}				
OUT OVLO threshold	Vin_out_ ovlo	V _{IN} rising		5.8		V
COM OVLO threshold	VIN_COM- OVLO	V _{IN} rising		5.8		V
OUT Switch On-Resistance	Ron1	V _{IN} = 5V, I _{OUT} = 0.5A, T _A = +25°C		40		mΩ
COM Switch On-Resistance	Ron2	V _{ISNS} = 1.8V, I _{COM} = 5mA, T _A = +25°C		60		Ω
ISNS Supply Current	I _{VDD}	V_{ISNS} = 1.8V, V_{IN} = 1.8V, NTC floating		15		uA
OVER-CURRENT PROTECTIC	DN					
OCP Threshold	I _{OCP}	T _A = 25°C		2.35		Α
OCP Response Time	tocp			45		us
OCP Auto-restart Time	tocp_rst			100		ms
TIMING CHARACTERISTICS						
Debounce Time	t _{DEB}	De-bounce Time for start rising		3		ms
Switch Turn-On Time	ton1	$\label{eq:VIN} \begin{split} V_{IN} = 5V, R_L = 100\Omega, C_{LOAD} = 100uF, V_{OUT} \\ from 0.1 \times V_{IN} \ to \ 0.9 \times V_{IN} \end{split}$		3		ms
Switch Turn-Off Time	toff1	$V_{IN} > V_{IN_OVLO}$ to $V_{OUT} = 0.8 \times V_{IN}$, R _L = 100 Ω , V _{IN} rising at 2V/µs		50		ns
THERMAL SHUTDOWN						
Thermal Shutdown				150		°C
Thermal Shutdown Hysteresis				15		°C
Note 1: This parameter is guara	anteed by d	esign and characterization; not production te	ested.			

4. Detailed Description

4.1 General Introduction

YHM2010M is a dual output over-voltage protection device. One is a low $40m\Omega$ (TYP) on-resistance high current path, the other is 60Ω (TYP) on-resistance communication path. Both the two output can actively protect low-voltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices. The over-voltage protection threshold is default 5.8V.

YHM2010M device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is 2.35A.

The communication path of COM features 10Mbps bandwidth which means the device support digital signal communication when powered by ISNS pin.

4.2 UVLO (Under-Voltage Lockout)

The device has a built-in under-voltage lockout (UVLO) circuit. When VIN is falling, the output remains connected from the input until IN voltage is below 3.5V (TYP). This circuit has a 100mV hysteresis to provide noise immunity to transient conditions.

4.3 OVLO (Over-Voltage Lockout)

When the voltage at the input exceeds OVLO threshold, the device immediately turns off the internal switch disconnecting the load from the abnormal voltage, preventing damage to downstream components. The OVLO threshold is 5.8V.

4.4 OCP (Over Current Protection)

The chip enters hiccup mode when the output load exceeds the over current threshold. The OCP threshold is 2.35A.

4.5 Communication Functionality

Both IN and ISNS may supply YHM2010M. YHM2010M would be powered by ISNS if ISNS voltage is higher than 1.5V. By this, YHM2010M supports digital signal transmission through IN and COM when the device is powered by ISNS. Typically, ISNS is recommended to be driven by GPIO typically. For example, ISNS=1.8V would power YHM2010M even when V_{IN} =0. It is necessary to remove input and output capacitor when communication is required.

4.6 Over Temperature Protection

YHM2010M has an internal 20μ A current source on NTC pin. When the voltage on NTC pin is below 300mV, the chip turns off. Once turned off, it cannot be turned on until VIN is disconnected and reconnected again. Choose a NTC to program the temperature protection threshold. Recommend 100Kohm NTC (Beta=3950) for 75°C protection. Keep floating if not use this function to save power.

4.7 Thermal Protection

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools down by 15°C (TYP).

Package Dimensions

WLCSP-6 1.17mm x 0.815mm x 0.574mm

Ordering Information

Part Number	Temp Range	Pin Package	Top Mark	MOQ
YHM2010MW6T	-40°C to 85°C	6 WLCSP	YWW LOT	3000

T = Tape and reel.

YWW: Date Code. Y = year, WW = week.

LOT: The last three number of LOTID.